REACTIONS OF B-HYDROXY SULFOXIDES WITH N-BROMOSUCCINIMIDE

Hiroaki Taguchi, Hisashi Yamamoto, and Hitosi Nozaki Department of Industrial Chemistry, Kyoto University Yoshida, Kyoto, Japan

(Received in Japan 17 May 1973; received in UK for publication 25 May 1973)

Derivatives of "halosulfoxonium salts" are relatively new class of species which are easily generated by the reaction of sulfoxides with N-bromo- or N-chlorosuccinimide.¹ In this letter, we wish to report a set of new and synthetically useful reactions involving β -hydroxy bromosulfoxonium salt II as a key intermediate.

2-Hydroxy-2,2-diphenylethyl methyl sulfoxide (I, $R^1 = R^2 = Ph$), readily available from methylsulfinylmethylsodium and benzophenone,² on treatment with N-bromosuccinimide (1.10 equiv) in methylene chloride at -45° for 2 hr, -25° for 1 hr, and 25° for 2 hr, afforded 2,2-diphenylvinyl methyl sulphone (IV, $R^1 = R^2 = Ph$)³ in 55% yield after thin layer chromatographic purification The formation of vinyl sulphone can be attributed to a sustained generation of cyclic alkoxysulfoxonium salt III followed by deprotonation

The DMSO⁻ adducts of enclizable ketones gave the β , σ -unsaturated sulphones in good yields. Thus, (1-hydroxycyclohexyl)methyl methyl sulfoxide (I, R¹, R² = -(CH₂)₅-) and (1-hydroxycyclododecyl)methyl methyl sulfoxide (I, R¹, R² = -(CH₂)₁₁-) yielded the corresponding 3, σ -unsaturated sulphone V (82%)⁴ and VI (74%),⁵ respectively. Although the smooth rearrangement of σ ,3- to 3,funsaturated sulphone is well known,⁶ alternative pathway involving the direct formation of this product from the intermediate III is also possible

$$\bigcirc$$
 - CH₂SO₂CH₃ V \bigcirc - CH₂SO₂CH₃ V

The analogous reactions using the adducts of aldehydes and DMSO as the starting sulfoxides follows the different course of reaction Thus, the treatment of 2-hydroxy-2-phenylethyl methyl sulfoxide (I, $R^1 = Ph$, $R^2 = H$) with N-bromosuccinimide produced phenacyl bromide as the major product (66%),7 accompanied with a small amount of the corresponding sulphone IV (R^1 = Ph, R^2 = H, 17%)⁸ This novel reaction would appear to involve initial deprotonation as shown below. Similarly, 2-hydroxydecyl methyl sulfoxide (I, $R^1 = n-C_8H_{17}$, $R^2 =$ H) gave a mixture of 1-bromo-2-decanone $(12\%)^9$ and 2-decenyl methyl sulphone (70%).¹⁰

REFERENCES

- (a) S. Hanessian, G. Yang-Chung, P. Lavallee, and A. G. Pernet, J. Amer. 1 Chem. Soc., 94, 8929 (1972), (b) T. Durst and K.-C Tin, Can J. Chem., <u>49</u>, 2375 (1971), (c) F. Jung and T Drust, <u>Chem. Commun.</u>, 4 (1973), (d) E J. Corey and C. U. Kim, Tetrahedron Lett., 919 (1973) E J. Corey and M. Chaykovsky, <u>J. Amer. Chem. Soc.</u>, <u>87</u>, 1345 (1965). 2. Ir (nujol) 1310, 1112 cm⁻¹; δ (CCl₄) 7 07 (s, 1H, olefinic), <u>m/e</u> 258 (M⁺) Ir (neat) 1315, 1135 cm⁻¹, δ (CCl₄) 5.06 (m, 1H, olefinic); <u>m/e</u> 174 (M⁺) Ir (neat) 1305, 1136 cm⁻¹, δ (CCl₄) 5.35 (t, 1H, olefinic), <u>m/e</u> 258 (M⁺). 3. 4 5. 6 D. E O'Connor and W. I. Lyness, ibid, 86, 3840 (1964). Identical with an authentic sample. 7. Ir (neat) 1310, 1132 cm⁻¹; δ (CC1_L) 7.07 (d, 1H, olefinic), 7.78 (d, 1H, 8 olefinic), $\underline{m}/\underline{e}$ 182 (M^+) 9. Ir (neat) 1720 cm⁻¹, $\int (CCl_4) 3.66$ (s, 2H, CH₂Br), $\underline{m/e} 234$ (M⁺). 10. Ir (neat) 1305, 1135 cm⁻¹, $\int (CCl_4) 4.24$ (m, 2H, olefinic); $\underline{m/e} 218$ (M⁺)